
1.  Introduction
The Shortwave (SW) cloud feedback (SWFB) represents the central uncertainty in the future warming and effective 
climate sensitivity (ECS) predicted by global climate models (GCMs). Uncertainty in SWFB is a function of the 
parameterizations of cloud processes necessitated by the relatively coarse resolution of GCMs. Most GCMs  tran-
sition from a positive SWFB in the subtropics to a negative SWFB poleward of 50°, albeit with substantial uncer-
tainty in magnitude (Gordon & Klein, 2014; Terai et al., 2016; Zelinka et al., 2016, 2020). Several CMIP6 GCMs 
with very high ECS (>5K) have emerged owing to a more positive extratropical SWFB (Bjordal et al., 2020; Frey 
& Kay, 2018; Zelinka et al., 2020) and this feature needs to be evaluated.

Different mechanisms have been put forward to explain negative extratropical SWFB:

1.	 �Replacement of susceptible cloud ice with more reflective liquid (McCoy et  al.,  2014b; Senior & Mitch-
ell, 1993; Tsushima et al., 2006)

2.	 �Suppression of ice hydrometeor sinks of cloud through reduced glaciation (Ceppi, Hartmann, & Webb, 2016; 
Field & Heymsfield,  2015; Kay et  al.,  2014; McCoy et  al.,  2015; Mülmenstädt et  al.,  2021; Tan & 
Storelvmo, 2019; Tsushima et al., 2006)

3.	 �Enhanced air-sea exchange of aerosol precursors (Bodas-Salcedo et al., 2019)
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4.	 �Strongly increasing adiabatic water content at cold temperatures (Betts & Harshvardhan,  1987; Frazer & 
Ming, 2022; Terai et al., 2019)

5.	 �Increased extratropical moisture convergence driving enhanced condensation (McCoy et al., 2019, 2020)

We focus on the last of these processes. This is motivated by previous studies that found that changes in surface 
temperature (Tskin) and moisture convergence could be used to explain changes in extratropical cloudiness with 
minor contributions from other terms such as boundary layer stability and subsidence (McCoy et al., 2020).

It is difficult to untangle the effects of increased local Tskin on clouds as it may act through several of the processes 
listed above. One probable explanation is that increased Tskin acts to enhance buoyancy fluxes in the boundary 
layer, reducing cloud condensate (Bretherton & Blossey, 2014). This mechanism has been found to be impor-
tant to boundary layer cloud changes across the subtropics (Klein et al., 2017; Myers & Norris, 2016; Myers 
et al., 2021). Here we treat Tskin variations as a proxy for all processes not related to moisture convergence, such 
as inversion strength as well as other boundary layer processes (Terai et al., 2016, 2019).

SWFB is essentially the change in upwelling SW (SW↑) due to clouds scaled by global mean temperature (GMT). 
SW↑ scales with albedo (α) at constant downwelling shortwave radiation and so the proportionality
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can be used to understand the effects of LWP changes on albedo and shortwave radiation. On the right hand side, 
the response of 𝐴𝐴 𝛼𝛼 to GMT can be broken into the response of α to liquid water mass (LWP) and the response of 

𝐴𝐴 𝐿𝐿𝐿𝐿 𝐿𝐿  to GMT. As discussed below, overbars denote regional means. The sensitivity ∂α/∂LWP is calculated at 
the native model resolution as discussed in Section 3.2. The proportionality above only considers the sensitivity 
of albedo to liquid whereas variations in ice are neglected. This is also discussed in detail in Section 3.2. We 
investigate and constrain GCM uncertainty in SWFB using terms on the right hand side of Equation 1.

2.  Materials and Methods
Section 2.1 discussed the GCM data used in our analysis and Section 2.2 discusses the observational data used 
to constrain GCM behavior.

2.1.  GCM Analysis

The GCM variables examined are clivi (ice water path), clwvi (total cloud water path), pr (precipitation), hfls 
(evaporative flux at the surface), rsut (SW↑ at the top of atmosphere), rsutcs (clear-sky SW↑ at the top of atmos-
phere), ts (Tskin), and tas (2m air temperature). clwvi is the sum of IWP and LWP and like microwave LWP is 
all-sky (averaged over cloudy and clear scenes). We calculate LWP as clwvi-clivi. Precipitation and evaporation 
are given in units of Wm −2.

For each GCM we analyze the pre-industrial control (piControl) and CO2 quadrupling (abrupt4xCO2) simula-
tions. The list of analyzed GCMs is given in the supplementary material (Table S1 in Supporting Information S1). 
The first 150 years of each simulation are examined, consistent with Sherwood et al. (2020).

The latitude range is 40–85°S unless otherwise stated. This is set by the region where zonal precipitation and 
evaporation difference (P − E) is consistently positive, which is similar across GCMs (Figure S1 in Supporting 
Information S1). P − E approximates moisture convergence when averaged over a large enough region (Held & 
Soden, 2006).

Our analysis is motivated in part by what variables can be well-observed in the extratropics. LWP is defined as 
the vertically-integrated mass of cloud liquid in a model grid cell, with the cloud-free portion of the box taken 
into account in the grid cell average, thus ensuring consistency with microwave observations of LWP (Elsaesser 
et al., 2017). Microwave LWP is insensitive to multi-layered clouds and does not have any dependence on sun-an-
gle, making it optimal for observing clouds in the extratropics.

Cloud source processes are investigated in the HadGEM3 GCM by perturbing the cloud fraction scheme. 
HadGEM3 is as described in Mulcahy et al. (2018) and is run in atmosphere-only mode (the General Atmosphere 
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7.1, GA7.1). The only change from the base version of the model is to switch 
the cloud scheme from PC2 (Wilson et al., 2008) to Smith (1990) because 
only one parameter needs to be perturbed in the latter.

2.2.  Observations

MERRA-2 reanalysis (Molod et al., 2015) is used to characterize mean-state 
variability in P − E, Tskin, and 2m temperature. Observations of clear- and 
all-sky SW flux are taken from the CERES EBAF data set (Ed 4.1) for the 
period 2000–2016 (Loeb et  al.,  2018; Wielicki et  al.,  1996). Observations 
of LWP are taken from MAC-LWP 1988–2016 (Elsaesser et  al.,  2017). 
MAC-LWP is a multi-satellite microwave column LWP record that is 
corrected for diurnal cycle artifacts and is directly comparable to GCM 
output without a satellite simulator (Bodas-Salcedo et al., 2011). However, 
microwave LWP is only available over open ocean (not over sea ice or land). 
The GCM output used in the main text are not filtered to remove land and sea 
ice to compare to existing SWFB calculations (Zelinka et al., 2020). Resultant 
sampling uncertainty is evaluated below.

3.  Results
At a regional scale the extratropics are characterized by convergence of 
moisture carried from the subtropics by transient eddies (e.g., extratropical 
cyclones) (Algarra et al., 2020; Guo et al., 2020; Hartmann, 2015; Held & 
Soden, 2006; Yettella & Kay, 2017). As shown in Held and Soden (2006), 
global warming drives enhanced moisture convergence in this region. Mois-
ture convergence is represented, as in previous work, as P − E. As in McCoy 
et al.  (2020), we consider a steady-state model of the extratropical atmos-
phere. In this framework increased moisture convergence is balanced by 
increased precipitation. The conversion of vapor to precipitation happens 
in clouds and increased moisture convergence drives increased cloudiness. 
This is shown schematically in Figure 1. In this framework the diversity of 
model responses is driven by the complexity of parameterizing subgrid-scale 
condensation and precipitation processes. Rates of creation and removal of 
cloud are considered in terms of efficiency of cloud sources (esource) and sinks 
(esink) and the reservoirs of vapor and condensed water (Figure 1a). Global 
warming causes increased extratropical moisture convergence (Figure 1b). 
In models where sources are efficient relative to sinks this leads to sharp 
increases in cloud and a relatively strong negative cloud feedback. If the effi-
ciencies are reversed the negative cloud feedback is weak (Figure 1c; McCoy 
et al., 2020).

3.1.  Changes in Liquid Cloud

In this section we characterize the dependence of extratropical liquid water 
path 𝐴𝐴 (𝐿𝐿𝐿𝐿 𝐿𝐿 ) on moisture convergence 𝐴𝐴 (𝑃𝑃 − 𝐸𝐸) and surface temperature 

𝐴𝐴 (𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) to predict 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (Equation 1) (Note average of quantities 
over 40°–85°S are denoted 𝐴𝐴 ( ) .) GCMs predictions of 𝐴𝐴 𝐿𝐿𝐿𝐿 𝐿𝐿  vary by an order 
of magnitude (Figure S2 in Supporting Information S1), while 𝐴𝐴 𝑃𝑃 − 𝐸𝐸 varies 
by only a factor of three (Figure S1 in Supporting Information S1).

As discussed in Section 2.2, LWP is column-integrated all-sky liquid mass, 
in contrast to focusing on low-topped clouds (Myers et al., 2021). This allows 
comparison between GCM output and microwave radiometer observations 
(Elsaesser et al., 2017).

Figure 1.  A schematic representation of the moisture convergence-cloud 
feedback mechanism examined in this study. (a) shows a hypothesized steady-
state balance between sources and sinks of cloud. The rate of cloud creation 
is represented as ksource, which is conceptualized as an aggregate efficiency 
of cloud creation (esource) multiplied by the reservoir of water vapor. The 
sink term ksink is represented as a bulk sink efficiency (esink) multiplied by 
the reservoir of condensed water. (b) shows a cartoon of enhanced moisture 
convergence (approximated as P − E in the text) in mean-state and warmed 
climate scenarios due to local and subtropical sources. Finally, (c) illustrates 
the resulting cloud condensate response to moisture convergence in the context 
of SWFB. In GCMs where source efficiency is high relative to sinks the 
increase in LWP will be large resulting in a strongly negative SWFB.
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We choose 𝐴𝐴 𝑃𝑃 − 𝐸𝐸 and 𝐴𝐴 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 as cloud controlling factors (Stevens & Bren-
guier, 2009) based on previous analysis that found that within a given meteor-
ological regime horizontal moisture convergence and sea surface temperature 
dominated the predicted change in extratropical LWP across a suite of GCMs 
(McCoy et  al.,  2019,  2020). The effect of neglecting other predictors in 
this study will be evaluated by prediction of out-of-sample future simula-
tions, as in Qu et al. (2015). The approximation of moisture convergence as 
P − E ignores advection out of the atmospheric column and zonal averaging 
is used to account for zonal advection over the Southern Ocean (Seager & 
Henderson, 2013).

In each GCM, the multiple linear regression model

𝐿𝐿𝐿𝐿 𝐿𝐿 = 𝑏𝑏1 ⋅ 𝑃𝑃 − 𝐸𝐸 + 𝑏𝑏2 ⋅ 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑏𝑏3� (2)

is trained in the piControl simulation and used to predict the abrupt4xCO2 
simulation. This follows the approach used to constrain subtropical cloud 
feedback in Qu et al. (2015). As discussed in Qu et al. (2015), predictor corre-
lation between cloud controlling factors can be problematic when R 2 > 0.9 
between predictors. The strongest correlation between predictors in our study 
was R 2 = 0.6.

One of the assumptions inherent to cloud controlling factor predictions is 
that the relationship between clouds and meteorological factors is unchanged 
between the climate mean-state and future warmed climates, referred to as 
“time-scale invariance” (Klein et al., 2017). We evaluate whether the predic-

tors in Equation 2 are time-scale invariant in the context of the GCMs by contrasting coefficients derived in 
mean-state and warmed simulations as in Qu et al.  (2015). The predictors in Equation 2 are consistent when 
inferred from piControl or from abrupt4xCO2 simulations (Figure S3 in Supporting Information S1).

Equation 2 predicts extratropical LWP. Extratropical moisture convergence is driven by local flux and tropical 
export (Algarra et al., 2020; Hartmann, 2015). SWFB is typically given as the feedback on global, rather than 
regional, mean temperature. Thus we write the prediction of LWP response to GMT as:

𝑑𝑑𝐿𝐿𝐿𝐿 𝐿𝐿

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
= 𝑏𝑏1 ⋅

𝑑𝑑𝑃𝑃 − 𝐸𝐸

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝑏𝑏2 ⋅

𝑑𝑑𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
+ 𝑏𝑏3� (3)

𝐴𝐴 𝐴𝐴𝑃𝑃 − 𝐸𝐸∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  , and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  are quantified as the linear regression of annual-mean 𝐴𝐴 𝑃𝑃 − 𝐸𝐸 , and 𝐴𝐴 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
on GMT for the first 150 years of abrupt4xCO2. b1−3 are calculated using multiple linear regression on month-
ly-mean piControl output using Equation 2.

The changes in LWP predicted by Equation 3 agree with the abrupt4xCO2 simulations (Figure 2). The correlation 
between abrupt4xCO2 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and the prediction based on Equation 3 is r = 0.71, and predictions fall 
along the 1-1 line (see discussion below). Fit lines in Figure 2 are calculated using orthogonal regression with 
uncertainty in both predictors and predictands. The 95% confidence range on the intercept and slope of the best 
fit line are calculated using Jackknife resampling (Tukey, 1958). Uncertainty is propagated from uncertainty in 
b1−3 and uncertainty in 𝐴𝐴 𝐴𝐴𝑃𝑃 − 𝐸𝐸∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  .

Several GCMs that share the same cloud physics (CESM2, CESM2-FV, CESM2-WACCM, WACCM-FV, E3SM-
1-0) are excluded from the fit in Figure 2. These GCMs are unique in only increasing extratropical LWP in the 
first 15 years of the abrupt4xCO2 simulation followed by decreasing LWP (Bjordal et al., 2020; Figure S4 in 
Supporting Information S1). The extratropical cloud response of CESM2 is an active area of investigation at this 
time and may related to the treatment of ice in the cloud physics parameterization (Bjordal et al., 2020).

An observational constraint on 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is calculated by training Equation 2 on observations from micro-
wave radiometers (Elsaesser et al., 2017) and reanalysis from MERRA-2 (Molod et al., 2015). Observed b1−3 
(Equation 2, see Figure S3 in Supporting Information S1) is combined with 𝐴𝐴 𝐴𝐴𝑃𝑃 − 𝐸𝐸∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

Figure 2.  Prediction of the change in extratropical (40–85°S) 𝐴𝐴 𝐿𝐿𝐿𝐿 𝐿𝐿  during 
CO2 quadrupling from Equation 2. LWP response is normalized by GMT 
change. The best fit line is shown in black with uncertainty in the best fit in 
gray shading. The 1-1 line is shown in dashes. Gray markers are not used 
in the fit (see text for details). The observational constraint is shown as a 
gray box on the x-axis and the intersection with the fit line is shown using 
horizontal dashed lines.
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for each GCM following Equation 3. Uncertainty is propagated from uncertainty in b1−3, but is dominated by 
spread between GCMs in 𝐴𝐴 𝐴𝐴𝑃𝑃 − 𝐸𝐸∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and 𝐴𝐴 𝐴𝐴𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  .

Microwave LWP is only available over open water (Wentz & Meissner, 2000). We quantify the sampling error 
due to neglecting data over ice and land. Predicted 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  for GCMs when the regression model (Equa-
tion 2) is trained using only data over open water is contrasted with the value when all data is used. Monthly values 
on the native grid of the GCM where αclear−sky > 0.4 are excluded to remove ice and land. The zonal-, latitudinal-, 
monthly-means calculated from the filtered data are used to train Equation 2. The constraint on 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  
is not strongly affected by only considering open ocean (Figure S5 in Supporting Information S1) and sampling 
error is included in the constraint in Figure 2.

The median value and standard deviation of 𝐴𝐴 𝐴𝐴𝑃𝑃 − 𝐸𝐸∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  across GCMs is 0.77  ±  0.39 Wm −2K −1. For 
𝐴𝐴 𝐴𝐴𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  it is 1.19  ±  0.36  K/K. The relative contribution to 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  by changes in 𝐴𝐴 𝑃𝑃 − 𝐸𝐸 

has a median value of 15% across GCMs but ranges from 0% up to 250% (values greater than 100% occur in 
GCMs where contributions from surface warming and moistening have opposing effects on 𝐴𝐴 𝐿𝐿𝐿𝐿 𝐿𝐿  ). 𝐴𝐴 𝑃𝑃 − 𝐸𝐸 
scales at slightly less than implied by Clausius-Clapeyron, which is consistent with earlier studies (Lorenz & 
DeWeaver, 2007). There is a median increase of 5.3%/K across the GCMs surveyed here.

Combining the observational constraint on 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  with the best fit line in Figure 2 yields a constraint 
on 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  ranging from 0.9 to 3.0 ⋅ g ⋅ m −2K −1. Direct comparison to other studies is difficult given 
differing study regions, lack of regime-partitioning, temporal-averaging and configurations of the warming 
signal, but qualitatively there is agreement regarding an increase in extratropical LWP in response to warming, 
albeit weaker than most GCMs (Figure S2 in Supporting Information S1) (Ceppi, McCoy, & Hartmann, 2016; 
Ceppi & Nowack, 2021; Manaster et al., 2017; McCoy et al., 2019, 2020).

Based on our analysis, we find that extratropical LWP changes in response to warming across many GCMs can 
be predicted based on their present-day, monthly covariability between Southern Ocean LWP, moisture conver-
gence, and TSkin. Given that these terms are among the simplest descriptors of atmospheric state (is the atmos-
phere warm on the bottom and is it moist), this is not too unexpected.

3.2.  Compensation Between Moisture Removal and Radiative Efficiency Across GCMs

We now consider the radiative sensitivity term ∂α/∂LWP from Equation 1. Because LWP integrates over cloudy 
and clear regions (Elsaesser et al., 2017) it is an emergent property of a complex population of clouds. To first 
order, the relation between LWP and SW↑ is a function of cloud areal extent (Bender et al., 2017), cloud optical 
thickness (Gordon & Klein, 2014), and the underlying surface properties (increased cloud will affect SW↑ more 
over a dark surface). To quantify how SW↑ responds to changes in LWP, we train the following multiple linear 
regression model relating albedo (α) to LWP and clear-sky α (αclear−sky)

𝛼𝛼 = 𝑐𝑐1 ⋅ 𝐿𝐿𝐿𝐿 𝐿𝐿 + 𝑐𝑐2 ⋅ 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑐𝑐3� (4)

where α = SW↑/SW↓ is calculated from monthly means of top-of-atmosphere flux. (Note the lack of overbars in 
Equation 4. This is because a regional average is not required as it is in Equation 2 to make P − E a reasonable 
approximation for moisture convergence.) The regression model in Equation 4 is trained on data from 40° to 
85°S at the native resolution of each GCM. It is trained independently in each calendar month due to residual 
effects from the seasonal cycle of solar zenith angle, which enhances α (McCoy et al., 2018). The regression 
model in Equation 4 could easily be improved, for instance by including information about IWP (which can be 
considered to be included in c3) or information about cloud fraction not already implicitly included in LWP, but 
we have chosen to consider variables that can be quantified accurately in observations and that are available from 
GCMs without the use of a satellite simulator (Bodas-Salcedo et al., 2011; Jiang et al., 2012)—in this case LWP 
and SW↑. LWP changes are generally much larger than IWP in the 40–80°S region with a median ratio of liquid 
to IWP change across GCMs of 8. Further, ice tends to be less reflective than liquid for a unit mass, (McCoy 
et al., 2014a) suggesting that neglecting it here does not adversely affect our prediction of albedo change.

The sensitivity of α to LWP (∂α/∂LWP) derived from piControl simulations is inversely related to the mean-
state LWP (Figure 3). Albedo and cloud fraction (the areal coverage of cloud, CF) are nearly linearly related 
(Bender et al., 2017), but the effects of in-cloud LWP (LWPin−cloud) on α saturates at high LWPin−cloud (Lacis & 
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Hansen, 1974; Liou, 2002). LWP includes information about LWPin−cloud and 
cloud extent (LWP ≈ CF ⋅ LWPin−cloud); thus, as the LWP across the extra-
tropics increases, liquid begins to affect SW↑ less efficiently by increasing 
liquid water density in cloud rather than filling in cloud cover. This leads to 
the saturation in ∂α/∂LWP as a function of increasing mean-state LWP.

Equation 4 is trained on observations from CERES and MAC-LWP to yield 
an observational estimate of ∂α/∂LWP. The ∂α/∂LWP estimated from obser-
vations falls along the relation between mean-state LWP and ∂α/∂LWP 
emerging from GCMs (Figure 3). This is encouraging as it suggests that the 
relationship between LWP and α is based on radiative transfer and distribu-
tions of cloud that are well-represented in GCMs (time-scale invariance is 
shown in Figure S3 in Supporting Information S1). ∂α/∂LWP inferred from 
observations is on the lower end of the ∂α/∂LWP in GCMs. The finding that 
GCM SW↑ is too sensitive to LWP is consistent with previous studies (Kelle-
her & Grise, 2019).

The sensitivity of LWP to converging moisture (𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸 , Equa-
tion 2) correlates positively with mean-state LWP (Figure 3). The sensitivity 
of LWP to Tskin 𝐴𝐴 (𝜕𝜕𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) does not correlate with mean-state LWP, 
and 95% of GCMs fall between −0.1  g ⋅ m −2K −1 and 7.0  g ⋅ m −2K −1. It 
is inferred from observations that 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 0.6 ± 0.1 g ⋅ m −2K −1. 
The diagnosed relationship relating LWP to Tskin is likely to represent several 
processes (Terai et al., 2019). We focus on 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸 because of its 
emergent relationship with mean-state LWP.

The relationship between 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸 and mean-state 𝐴𝐴 𝐿𝐿𝐿𝐿 𝐿𝐿  shown in Figure 3 can be explained in the 
framework of sources and sinks of cloud (Figure  1). LWP will be high when sources of cloud are efficient 
relative to sinks. Further, LWP will be sensitive to increased moisture convergence (a large 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸 ). 
However, radiation will be insensitive to increased LWP (a small ∂α/∂LWP) because the extratropics will already 
be extremely cloudy (CF ≈ 1) and thus there will be relatively few clear patches that can be filled in for maximum 
radiative effect. Instead, overcast regions must increase in-cloud liquid content for diminishing returns in SW↑.

We test the hypothesis that the dependence of 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸 and ∂α/∂LWP on mean-state 𝐴𝐴 𝐿𝐿𝐿𝐿 𝐿𝐿  is a function 
of varying cloud source and sink strength using HadGEM3 run in atmosphere-only mode (Mulcahy et al., 2018) 
with the Smith cloud scheme (Smith,  1990), which uses a critical relative humidity (RHcrit; Quaas,  2012; 
Smith, 1990). Use of the Smith cloud scheme allows us to represent the strength of the source term using a single 
parameter (RHcrit). RHcrit is varied from 100% (clouds are only formed when the GCM grid box has total relative 
humidity >100%) to 20%. The mean-state pattern of P − E changes dramatically for RHcrit <80%. To provide a 
fair comparison to the coupled GCMs we examine the latitude range in each HadGEM3 simulation where clima-
tological, zonal-mean P − E is positive as opposed to selecting 40–85°S, as in the coupled GCMs (see Figure S1 
in Supporting Information S1). The dependence of 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸 and ∂α/∂LWP on mean-state LWP derived 
from the HadGEM3 simulations agrees with the behavior of the coupled GCMs. As RHcrit decreases (stronger 
cloud source) 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸 increases and ∂α/∂LWP decreases. This supports our hypothesis that the relative 
efficiency of sources and sinks in GCMs affect mean-state cloud, the response of extratropical cloud to increased 
moisture convergence, and the effect of increased cloud on SW↑.

In summary, strong responses of LWP to moisture convergence in warming simulations are compensated by weak 
increases in SW↑ in response to LWP. The relationships in Figure 3 may provide a useful process-level constraint 
on GCMs.

3.3.  Constraints on SW Cloud Feedback

In the preceding sections we provided constraints on the terms on the right-hand-side of Equation 1. We now 
combine these constraints to provide a constraint on SWFB following Equation 1. It is found that Equation 1 using 
values from Figures 2 and 3 predicts SWFB across GCMs (Figure 4a). The term ∂α/∂LWP is calculated via Equa-
tion 4 using December values (when insolation is strong).

Figure 3.  Radiative efficiency (∂α/∂LWP) and moisture sensitivity 
𝐴𝐴 (𝜕𝜕𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸) anti-correlate across GCMs as a function of mean state 

extratropical 𝐴𝐴 𝐿𝐿𝐿𝐿 𝐿𝐿  . Observations from CERES, MERRA-2, and MAC-LWP 
are shown using triangles. Simulations in HadGEM3 perturbing source 
strength (RHcrit is noted in boxes) are shown as circles. A powerlaw is used to 
fit ∂α/∂LWP and a second order polynomial is used to fit 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝜕𝜕𝑃𝑃 − 𝐸𝐸 .
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The prediction of SWFB for three regions by 40–85°S 𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  and ∂α/∂LWP is shown. Moistening is not 
uniform across the 40°–85°S region (Figure S1 in Supporting Information S1). LWP is reduced in the 40°–50°S 
region consistent with Hadley cell expansion and drying (Grise & Medeiros, 2016; Kay et al., 2014; Kelleher & 
Grise, 2021; Lu et al., 2007; Sousa et al., 2018; Tselioudis et al., 2016; Figure S1 in Supporting Information S1) 
and SWFB tends to be positive in this region (Figure 4a). In the 50–85° S region there is consistent moistening 
(Figure S1 in Supporting Information S1), LWP increases (Figure S2 in Supporting Information S1), and SWFB 
tends to be negative (Figure 4a). The prediction of SWFB averaged 40°–85°S is the area-weighted sum of these 
effects. Clearly, influence on the region of moistening by Hadley cell expansion modulates extratropical SWFB 
(Kelleher & Grise, 2021).

Prediction of Hadley cell expansion is beyond the scope of this work. Thus, we examine the region of consistent 
moistening. Equation 1 explains 83% of the variance in SWFB averaged between 50° and 85°S (Figure 4a). The 
observational constraints on the right hand side of Equation 1 predicts the contribution to global-mean SWFB 
from the 50°–85°S region to be between −0.1 Wm −2K −1 and 0.0 Wm −2K −1, consistent with the interpretation of 

Figure 4.  (a) SW cloud feedback (SWFB) as a function of the predicted response of 40–85°S 𝐴𝐴 𝐿𝐿𝐿𝐿 𝐿𝐿  to GMT 
(𝐴𝐴 𝐴𝐴𝐿𝐿𝐿𝐿 𝐿𝐿∕𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  , Figure 2) scaled by the sensitivity of α to LWP (∂α/∂LWP, Figure 3). The range consistent with 
observations is shown as a shaded gray box and the best fit regression and 95% confidence on the fit are shown using a 
black line and gray shading. SWFB is shown averaged over three regions: 40–50°S (drying driven by Hadley cell expansion), 
50–85°S (the region of consistent moistening), and 40–85°S. (b) the distribution of 50–85°S SWFB and 35°S–35°N total 
marine low cloud feedback in CMIP5 and CMIP6 GCMs colored by ECS. Observational constraints from this study (y-axis, 
panel (a)) and consistent with Myers et al. (2021) (x-axis) are shown as gray shading (Text S1 in Supporting Information S1). 
SWFB is shown weighted by global surface area-in contrast to (a). (c) the effects on the distribution of ECS in CMIP5 and 
CMIP6 of removing GCMs not consistent with the constraints shown in (b). The effect of constraining the prior distribution 
of models by subtropical and extratropical constraints from (b) are shown along with the result of applying both constraints at 
once.
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Equation 1 as an emergent constraint on 50°–85°S SWFB (Hall & Qu, 2006; Klein & Hall, 2015). In summary, 
SWFB is negative in regions of moistening.

3.4.  Conclusion and Probable Range of ECS

How does the constraint on SWFB from Equation 1 inform the most probable range for ECS? For illustrative 
purposes we detail a simple constraint. The ECS calculated from 71 CMIP5 and CMIP6 models (Zelinka 
et al., 2020) is constrained by 50°–85°S (extratropical moistening regime) and 35°S–35°N (subtropical) cloud 
feedback (Figure 4b). The subtropical marine, low-topped cloud feedback is examined for consistency with previ-
ous studies (Myers et al., 2021; Text S1 in Supporting Information S1). The number of GCMs is increased here 
because fewer GCMs have all the necessary variables to examine moisture and cloud changes, as detailed in the 
preceding sections. The subtropical and extratropical SWFB are considered simultaneously because subtropical 
cloud feedback is a key uncertainty (Bony, 2005; Bretherton & Caldwell, 2020; Myers & Norris, 2016).

More positive cloud feedback in either averaging region corresponds to higher ECS. Subtropical and extratropical 
cloud feedbacks are correlated across GCMs (Figure 4b). Constraining GCMs to be consistent with constraints 
on either regional cloud feedback doesn't substantially narrow ECS (Figure 4c). Consideration of both constraints 
results in ECS falling between 2.6 and 4.8 K with a median of 4.3 K. No GCMs with ECS <2.5K or >5K out of 
the original 71 GCMs are consistent with constraints on both subtropical and extratropical cloud feedback and the 
means differ at 95% confidence using a Welch's t-test. However, this approach is sensitive to the prior distribution 
from GCMs.

We calculate a more rigorous constraint on ECS using the World Climate Research Programme (WCRP) Bayes-
ian framework (Sherwood et al., 2020). In Sherwood et al. (2020) process-level understanding of cloud feedbacks 
from the literature was evaluated and the most likely ranges for cloud feedback in various geographic regions 
and cloud regimes were input into a Bayesian model along with other constraints on ECS, such as paleoclimate 
records. The cloud feedbacks in the 50°–85° regions considered by Sherwood et al. (2020) were: 40°–70° cloud 
optical depth set at 0.0 Wm −2K −1 ± 0.2 at 95% confidence and middle latitude (30°–60°) marine low cloud set at 
+0.08 ± 0.16 Wm −2K −1. All other potential cloud feedbacks in the 50°–85° region were assumed to be 0.0 ± 0.0 
Wm −2 K −1 because of insufficient process-level understanding and constraints.

Summing the different probable feedback values from Sherwood et al. (2020) for the 50°S–85°S region (assum-
ing all feedbacks are constant in their given latitude ranges) gives a value of +0.01 ± 0.06 Wm −2 K −1. Both Sher-
wood et al. (2020) and Figure 4 suggest very negative extratropical cloud feedbacks are unlikely. However, we can 
infer from Figure 4 that the most likely value of SWFB to be negative because it does not neglect non-boundary 
layer cloud, or cloud poleward of 70°, for which GCMs consistently predict a negative SWFB (Ceppi, McCoy, & 
Hartmann, 2016; Terai et al., 2016; Zelinka et al., 2016).

The latitude range used in the WCRP assessment for the extratropical region (oceans 60°–90° in both hemi-
spheres) differs slightly from our analysis of the uniform moistening in the Southern Ocean (50°–85°S). To use 
the existing WCRP code we need to offer a prediction for the 60°–90° oceans. Using the predictor in Figure 4 
for 60°–90° yields a similar prediction (Figure S6 in Supporting Information S1) to those shown in Figure 4a. 
Combining this value with the constraint provided by Myers et al. (2021) results in a global constraint on marine 
cloud feedback. This is used to update the likelihood of ECS from Sherwood et al. (2020) of 3.11 K (95% confi-
dence: 2.26–4.70 K) to 2.86 K (95% confidence: 2.13–4.12 K). The probability of ECS above the 4.5 K upper end 
of the AR5 likely range becomes increasingly unlikely falling from 6.6% (Sherwood et al., 2020), to 2.3% when 
using constraints on global marine cloud feedback.

Our analysis points to enhanced moisture convergence in the extratropics as a key driver of enhanced cloud 
condensate and negative feedback in this region. The control on where moistening occurs exerted by Hadley 
cell expansion is found to be an important modulator of extratropical SWFB. The response of cloud to mois-
ture  convergence is presented in a source-sink framework (Figure 1). Because strong sources make the extratrop-
ical atmosphere very cloudy, this results in compensation between the effects of increased moisture on cloud and 
increased cloud on radiation (Figure 3). The terms in Figure 3 can provide a useful process constraint for GCMs. 
Observations of radiative efficiency and of the response of clouds to meteorology suggest that extratropical SWFB 
in regions of moistening is negative, albeit not as negative as predicted by many GCMs (Figure 4a). Overall, 
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extreme ECS is not consistent with observationally-constrained extratropical SWFB when combined with other 
lines of evidence (Myers et al., 2021; Sherwood et al., 2020; Figure 4b and 4c).

Data Availability Statement
All CMIP data are archived at esgf-node.llnl.gov/projects/esgf-llnl/. Up-to-date ECS and cloud feedbacks are 
available at: https://github.com/mzelinka/cmip56_forcing_feedback_ecs or published in Zelinka et  al.  (2020). 
Output from GA7.1 using the Smith scheme are accessed through the data server at the JASMIN Centre for 
European Data Analysis using the Moose archive interface (https://gws-access.jasmin.ac.uk/public/mohc_
shared/moose-user-doc/external_user_guide.html). The permanent access numbers are: “u-bt821”, “u-bt845”, 
“u-bt848”, “u-bt850”, “u-bt819”, “u-bt852”. MAC-LWP data can be accessed at https://disc.gsfc.nasa.gov/data-
sets/MACLWP_diurnal_1/summary?keywords=measures. MERRA-2 data are available at https://disc.gsfc.nasa.
gov/datasets/M2TMNXSLV_5.12.4/summary?keywords=MERRA2.
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